Sains Malaysiana 54(7)(2025): 1739-1750

http://doi.org/10.17576/jsm-2025-5407-08

 

Biodegradation of Low-Density Polyethylene (LDPE) using Yeast Isolates from Plastic Waste Biofilms

(Biodegradasi Polietilena Ketumpatan Rendah (LDPE) menggunakan Pengasingan Yis daripada Biofilem Sisa Plastik)

 

NUR HIDAYATUL ALAMI1,2, ELLA PUTRY WULAN DARY2, NENGAH DWIANITA KUSWYTASARI2, ENNY ZULAIKA2 & MAYA SHOVITRI2, FENRYCO PRATAMA3, ISTY ADHITYA PURWASENA3 & PINGKAN ADITIAWATI3,*

 

1Doctoral Program of Biology, School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia

2Department of Biology, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Jl. Raya ITS, Keputih, Sukolilo, Surabaya 60111, Indonesia

3Microbial Biotechnology Research Group, School of Life Sciences and Technology,

Institut Teknologi Bandung, Jl. Ganesha No.10, Bandung 40132, Indonesia

 

Diserahkan: 17 September 2024/Diterima: 5 Mei 2025

 

Abstract

Low-density polyethylene (LDPE) is an abundant and widely commercialized petroleum-based synthetic thermoplastic. It has a high molecular weight and a very hydrophobic surface. The strong C–C bond also makes LDPE resistant to biological attacks. Biodegradation presents a promising eco-friendly solution for tackling plastic waste. This study aimed to investigate the potential of yeast from plastic waste to degrade LDPE. Yeast was isolated from various plastic-polluted areas in Surabaya and Banyuwangi, Indonesia. The screening test was performed on mineral salt medium agar (MSMA) supplemented with polyethylene powder. The biodegradation test was conducted for 4 weeks in Mineral Salt Medium Broth (MSMB) with LDPE film. The ability of the isolates to degrade LDPE was evaluated by measuring the reduction in dry weight of plastic (% degradation), yeast growth via Optical Density (OD600 nm), Scanning Electron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) analysis. Screening on MSMA showed that 13 isolates could degrade polyethylene, as indicated by the formation of clear zones. The five best isolates were used for further biodegradation tests. The yeast isolate M.3.0.1 exhibited the highest degradation percentage of 1.1474±0.0888%. It demonstrated increased growth in the test medium, as indicated by an increase in optical density. In addition, SEM analysis showed a change in the morphology of the LDPE surface, and FTIR analysis showed a change in the transmittance value for the test plastic.

Keywords: Biodegradation; low-density polyethylene; plastic; waste; yeast

 

Abstrak

Polietilena berketumpatan rendah (LDPE) ialah termoplastik sintetik berasaskan petroleum yang banyak dan dikomersialkan secara meluas. Ia mempunyai berat molekul yang tinggi dan permukaan yang sangat hidrofobik. Ikatan C–C yang kuat juga menjadikan LDPE rintang terhadap serangan biologi. Biodegradasi memberikan penyelesaian mesra alam yang berpotensi untuk menangani sisa plastik. Penyelidikan ini bertujuan untuk mengkaji potensi yis daripada sisa plastik untuk merendahkan LDPE. Yis diasingkan dari pelbagai kawasan tercemar plastik di Surabaya dan Banyuwangi, Indonesia. Ujian saringan dilakukan pada agar medium garam mineral (MSMA) yang ditambah dengan serbuk polietilena. Ujian biodegradasi telah dijalankan selama 4 minggu dalam Mineral Salt Medium Broth (MSMB) dengan filem LDPE. Keupayaan pencilan untuk merendahkan LDPE dinilai dengan mengukur pengurangan berat kering plastik (% degradasi), pertumbuhan yis melalui Ketumpatan Optik (OD600 nm), Mikroskopi Elektron Pengimbasan (SEM) dan analisis Spektroskopi transformasi Fourier infra merah (FTIR). Saringan pada MSMA menunjukkan bahawa 13 pencilan boleh merendahkan polietilena, seperti yang ditunjukkan oleh pembentukan zon jernih. Lima pencilan terbaik telah digunakan untuk ujian biodegradasi selanjutnya. Pengasingan yis M.3.0.1 menunjukkan peratusan degradasi tertinggi iaitu 1.1474±0.0888%. Ia menunjukkan peningkatan pertumbuhan dalam medium ujian, seperti yang ditunjukkan oleh peningkatan ketumpatan optik. Di samping itu, analisis SEM mendedahkan perubahan dalam morfologi permukaan LDPE dan analisis FTIR menunjukkan perubahan dalam nilai penghantaran untuk plastik ujian.

Kata kunci: Biodegradasi; plastik; polietilena berketumpatan rendah; sisa; yis

 

RUJUKAN

Afianti, N.F., Rachman, A., Hatmanti, A., Yogaswara, D., Anggiani, M., Fitriya, N. & Darmayati, Y. 2022. Microbial biofilm of plastic in tropical marine environment and their potential for bioremediation of plastic waste. Journal of Ecological Engineering 23(4): 261-275. https://doi.org/10.12911/22998993/145463

Asmi, N., Baharuddin, M. & Febryanti, A. 2022. Skrining mikroba pendegradasi plastik dari tanah dan uji biodegradasi dengan Fourier transform infrared (FTIR). Al-Kauniyah: Jurnal Biologi 15(1): 151-163. https://doi.org/10.15408/kauniyah.v15i1.19826

Bahl, S., Dolma, J., Singh, J.J. & Sehgal, S. 2020. Biodegradation of plastics: A state of the art review. Materials Today: Proceedings 39: 31-34. https://doi.org/10.1016/j.matpr.2020.06.096

Basmage, O.M. & Hashmi, M.S.J. 2020. Plastic products in hospitals and healthcare systems. Encyclopedia of Renewable and Sustainable Materials, edited by Hashmi, S. & Choudhury, I.A. Elsevier. pp. 648-657. https://doi.org/10.1016/B978-0-12-803581-8.11303-7

Bhagwat, G., O’Connor, W., Grainge, I. & Palanisami, T. 2021. Understanding the fundamental basis for biofilm formation on plastic surfaces: Role of conditioning films. Frontiers in Microbiology 12: 687118. https://doi.org/10.3389/fmicb.2021.687118

Brunner, I., Fischer, M., Rüthi, J., Stierli, B. & Frey, B. 2018. Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS ONE 13(8): e0202047. https://doi.org/10.1371/journal.pone.0202047

Burnd, M. & Yrick, J. 2021. Product preservation design of vegetable and animal food processing. Journal La Lifesci. 2(6): 1-12. https://doi.org/10.37899/journallalifesci.v2i6.525

Cheng, J., Jacquin, J., Conan, P., Pujo-Pay, M., Barbe, V., George, M., Fabre, P., Bruzaud, S., Ter Halle, A., Meistertzheim, A.L. & Ghiglione, J.F. 2021. Relative influence of plastic debris size and shape, chemical composition and phytoplankton-bacteria interactions in driving seawater plastisphere abundance, diversity and activity. Frontiers in Microbiology 11: 610231. https://doi.org/10.3389/fmicb.2020.610231

Damayanti, N., Sulaiman, N. & Ibrahim, N. 2020. Plastic biodegradation by Peseudomonas aeruginosa UKMCC1011 using a modified Winogradsky column. Scientific Journal of PPI-UKM Science and Engineering 7(2): 43-49. https://doi.org/10.27512/sjppi-ukm/se/a17052020

Das, M.P. & Kumar, S. 2015. An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech 5(1): 81-86. https://doi.org/10.1007/s13205-014-0205-1

Duan, D., Feng, Z., Dong, X., Chen, X., Zhang, Y., Wan, K., Wang, Y., Wang, Q., Xiao, G., Liu, H. & Ruan, R. 2021. Improving bio-oil quality from low-density polyethylene pyrolysis: Effects of varying activation and pyrolysis parameters. Energy 232: 121090. https://doi.org/10.1016/j.energy.2021.121090

Elsamahy, T., Sun, J., Elsilk, S.E. & Ali, S.S. 2023. Biodegradation of low-density polyethylene plastic waste by a constructed tri-culture yeast consortium from wood-feeding termite: Degradation mechanism and pathway. Journal of Hazardous Materials 448: 130944. https://doi.org/10.1016/j.jhazmat.2023.130944

El-Sayed, A.S.A., ElSayed, A.I., Wadan, K.M., El-Saadany, S.S. & Abd El-Hady, N.A.A. 2024. Camptothecin bioprocessing from Aspergillus terreus, an endophyte of Catharanthus roseus: Antiproliferative activity, topoisomerase inhibition and cell cycle analysis. Microbial Cell Factories 23: 15. https://doi.org/10.1186/s12934-023-02270-4

Geyer, R. 2020. Production, use, and fate of synthetic polymers. In Plastic Waste and Recycling, edited by Letcher, T.M. Massachusetts: Academic Press. pp. 13-32. https://doi.org/10.1016/b978-0-12-817880-5.00002-5

Gilan, I., Hadar, Y. & Sivan, A. 2004. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Applied Microbiology and Biotechnology 65(1): 97-104. https://doi.org/10.1007/s00253-004-1584-8

Gupta, K.K. & Devi, D. 2020. Characteristics investigation on biofilm formation and biodegradation activities of Pseudomonas aeruginosa strain ISJ14 colonizing low density polyethylene (LDPE) surface. Heliyon 6(7): e04398. https://doi.org/10.1016/j.heliyon.2020.e04398

Hussein, A.A., Al-Mayaly, I.K.A., Hussein, S., Hussein, A.A., Al-Mayaly, I.K., Khudeir, S.H., Hussein, A.A., Al-Mayaly, I.K. & Kudier, S.H. 2015. Isolation, screening and identification of Low Density Polyethylene (LDPE) degrading bacteria from contaminated soil with plastic wastes. Mesopotamia Environmental Journal 1(4): 1-14.

Khruengsai, S., Sripahco, T. & Pripdeevech, P. 2021. Low-density polyethylene film biodegradation potential by fungal species from Thailand. Journal of Fungi 7(8): 594. https://doi.org/10.3390/jof7080594

Kopecká, R., Kubínová, I., Sovová, K., Mravcová, L., Vítěz, T. & Vítězová, M. 2022. Microbial degradation of virgin polyethylene by bacteria isolated from a landfill site. SN Applied Sciences 4: 302. https://doi.org/10.1007/s42452-022-05182-x

Kumar, R., Verma, A., Shome, A., Sinha, R., Sinha, S., Jha, P.K., Kumar, R., Kumar, P., Shubham, Das, S., Sharma, P. & Prasad, P.V.V. 2021. Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions. Sustainability (Switzerland) 13(17): 9963. https://doi.org/10.3390/su13179963

Kumari, S., Rao, A., Kaur, M. & Dhania, G. 2023. Petroleum-based plastics versus bio-based plastics: A review. Nature Environment and Pollution Technology 22(3): 1111-1124. https://doi.org/10.46488/NEPT.2023.v22i03.003

Kurniawan, A., Tsuchiya, Y., Eda, S. & Morisaki, H. 2015. Characterization of the internal ion environment of biofilms based on charge density and shape of ion. Colloids and Surfaces B: Biointerfaces 136: 22-26. https://doi.org/10.1016/j.colsurfb.2015.08.047

Kuswytasari, N.D., Kurniawati, A.R., Alami, N.H., Zulaika, E., Shovitri, M., Kumari, N. & Luqman, A. 2023. Plastic biodegradation potential of soil mangrove mold isolated from Wonorejo, Indonesia. Advancements in Life Sciences 10(2): 228-238. http://blast.ncbi.nlm.nih.gov/Blast.cgi

Liu, X., Yao, H., Zhao, X. & Ge, C. 2023. Biofilm formation and control of foodborne pathogenic bacteria. Molecules 28(6): 2432. https://doi.org/10.3390/molecules28062432

Lubis, A.S., Muis, Z.A. & Siregar, N.A. 2020. The effects of low-density polyethylene (LDPE) addition to the characteristics of asphalt mixture. IOP Conference Series: Earth and Environmental Science 476: 012063. https://doi.org/10.1088/1755-1315/476/1/012063

Martins, C.H.G., Pires, R.H., Cunha, A.O., Pereira, C.A.M., de Lacorte Singulani, J., Abrão, F., de Moraes, T. & Mendes-Giannini, M.J.S. 2016. Candida/Candida biofilms. First description of dual-species Candida albicans/C. rugosa biofilm. Fungal Biology 120(4): 530-537. https://doi.org/10.1016/j.funbio.2016.01.013

Meijer, L.J.J., Van Emmerik, T., Van Der Ent, R., Schmidt, C. & Lebreton, L. 2021. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Sci. Adv. 7(18): eaaz5803. https://www.science.org

Mohammadi, K. & Saris, P.E.J. 2022. Biofilm formation of probiotic Saccharomyces cerevisiae var. boulardii on glass surface during beer bottle ageing. Beverages 8(4): 77. https://doi.org/10.3390/beverages8040077

Mohanan, N., Montazer, Z., Sharma, P.K. & Levin, D.B. 2020. Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology https://doi.org/10.3389/fmicb.2020.580709

Nayanathara Thathsarani Pilapitiya, P.G.C. & Ratnayake, A.S. 2024. The world of plastic waste: A review. Cleaner Materials 11: 100220. https://doi.org/10.1016/j.clema.2024.100220

Odobel, C., Dussud, C., Philip, L., Derippe, G., Lauters, M., Eyheraguibel, B., Burgaud, G., Halle, A., Meistertzheim, A., Bruzaud, S., Bruzaud, S. & Ghiglione, J. 2021. Bacterial abundance, diversity and activity during long-term colonization of non-biodegradable and biodegradable plastics in seawater. Frontiers in Microbiology https://doi.org/10.3389/fmicb.2021.734782

Rachmawati, A.C., Mahardika, A., Djohan, Susanto, A.B. & Andriana, B.B. 2021. Exploration of plastic-degrading bacteria from Marina Beach, Semarang, Central Java. Ilmu Kelautan: Indonesian Journal of Marine Sciences 26(4): 247-253. https://doi.org/10.14710/ik.ijms.26.4.247-253

Rana, K. & Rana, N. 2020. Isolation and screening of plastic degrading bacteria from dumping sites of solid waste. International Journal of Current Microbiology and Applied Sciences 9(7): 2611-2618. https://doi.org/10.20546/ijcmas.2020.907.308

Restrepo-Flórez, J.M., Bassi, A. & Thompson, M.R. 2014. Microbial degradation and deterioration of polyethylene - A review. International Biodeterioration and Biodegradation 88: 83-90. https://doi.org/10.1016/j.ibiod.2013.12.014

Sarker, M., Rashid, M.M., Rahman, M.S. & Molla, M. 2012. Environmentally harmful low density waste plastic conversion into kerosene grade fuel. Journal of Environmental Protection 3(8): 700-708. https://doi.org/10.4236/jep.2012.38083

Sekar, S., Mahadevan, S., Kumar, S.S.D. & Mandal, A.B. 2011. Thermokinetic responses of the metabolic activity of Staphylococcus lentus cultivated in a glucose limited mineral salt medium. Journal of Thermal Analysis and Calorimetry 104(1): 149-155. https://doi.org/10.1007/s10973-010-1121-1

Seo, M.J., Yun, S.D., Kim, H.W. & Yeom, S.J. 2023. Polyethylene-biodegrading microbes and their future directions. Biotechnology and Bioprocess Engineering 28(6): 977-989. https://doi.org/10.1007/s12257-022-0264-9

Shah, A.A., Hasan, F., Hameed, A. & Ahmed, S. 2008. Biological degradation of plastics: A comprehensive review. Biotechnology Advances 26(3): 246-265. https://doi.org/10.1016/j.biotechadv.2007.12.005

Shineh, G., Mobaraki, M., Perves Bappy, M.J. & Mills, D.K. 2023. Biofilm formation, and related impacts on healthcare, food processing and packaging, industrial manufacturing, marine industries, and sanitation - A review. Applied Microbiology 3(3): 629-665. https://doi.org/10.3390/applmicrobiol3030044

Shovitri, M., Hefdiyah, H., Antika, T.R., Kuswytasari, N.D., Alami, N.H., Zulaika, E., Kim, S.W. & Oh, M.K. 2023. Plastic-degrading bacteria isolated from contaminated mangrove sediment in Wonorejo, Surabaya. Applied Environmental Biotechnology 8(2): 18-28. https://doi.org/10.26789/AEB.2023.02.003

Srikanth, M., Sandeep, T.S.R.S., Sucharitha, K. & Godi, S. 2022. Biodegradation of plastic polymers by fungi: A brief review. Bioresources and Bioprocessing 9: 42. https://doi.org/10.1186/s40643-022-00532-4

Tao, X., Ouyang, H., Zhou, A., Wang, D., Matlock, H., Morgan, J.S., Ren, A.T., Mu, D., Pan, C., Zhu, X., Han, A. & Zhou, J. 2023. Polyethylene degradation by a Rhodococcous strain isolated from naturally weathered plastic waste enrichment. Environmental Science and Technology 57(37): 13901-13911. https://doi.org/10.1021/acs.est.3c03778

Tokiwa, Y., Calabia, B.P., Ugwu, C.U. & Aiba, S. 2009. Biodegradability of plastics. International Journal of Molecular Sciences 10(9): 3722-3742. https://doi.org/10.3390/ijms10093722

Tuteja, J., Vyas, A. & Sand, A. 2024. Polyethylene - New Developments and Applications. https://doi.org/10.5772/intechopen.111214

Wahyuningsih, N. & Zulaika, E. 2018. Perbandingan pertumbuhan bakteri selulolitik pada media nutrient broth dan carboxy methyl cellulose. Jurnal Sains dan Seni ITS 7(2): E36-E38.

Wall, G., Montelongo-Jauregui, D., Vidal Bonifacio, B., Lopez-Ribot, J.L. & Uppuluri, P. 2019. Candida albicans biofilm growth and dispersal: Contributions to pathogenesis. Current Opinion in Microbiology 52: 1-6. https://doi.org/10.1016/j.mib.2019.04.001

World Bank. 2021. Plastic Waste Discharges: From Rivers and Coastlines in Indonesia. East Asia and Pacific Region: MARINE PLASTICS SERIES. www.worldbank.org

Yang, W.K., Gong, Z., Wang, B.T., Hu, S., Zhuo, Y., Jin, C.Z., Jin, L., Lee, H.G. & Jin, F.J. 2024. Biodegradation of low-density polyethylene by mixed fungi composed of Alternaria sp. and Trametes sp. isolated from landfill sites. BMC Microbiology 24: 321. https://doi.org/10.1186/s12866-024-03477-0

Yoon, M.J., Jeon, H.J. & Kim, M.N. 2012. Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. Journal of Bioremediation & Biodegradation 3: 145. https://doi.org/10.4172/2155-6199.1000145

Zadjelovic, V., Erni-Cassola, G., Obrador-Viel, T., Lester, D., Eley, Y., Gibson, M.I., Dorador, C., Golyshin, P.N., Black, S., Wellington, E.M.H. & Christie-Oleza, J.A. 2022. A mechanistic understanding of polyethylene biodegradation by the marine bacterium Alcanivorax. Journal of Hazardous Materials 436: 129278. https://doi.org/10.1016/j.jhazmat.2022.129278

Zhang, F., Zhao, Y., Wang, D., Yan, M., Zhang, J., Zhang, P., Ding, T., Chen, L. & Chen, C. 2021. Current technologies for plastic waste treatment: A review. Journal of Cleaner Production 282: 124523.

Zhang, N., Ding, M. & Yuan, Y. 2022. Current advances in biodegradation of polyolefins. Microorganisms 10(8): 1537. MDPI. https://doi.org/10.3390/microorganisms10081537

Zhang, Y., Pedersen, J.N., Eser, B.E. & Guo, Z. 2022. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnology Advances 60: 107991. Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2022.107991

 

*Pengarang untuk surat-menyurat; email: pingkan@itb.ac.id

 

 

 

 

 

 

 

 

           

sebelumnya