Sains
Malaysiana 54(7)(2025): 1739-1750
http://doi.org/10.17576/jsm-2025-5407-08
Biodegradation
of Low-Density Polyethylene (LDPE) using Yeast Isolates from Plastic Waste
Biofilms
(Biodegradasi Polietilena Ketumpatan
Rendah (LDPE) menggunakan Pengasingan Yis daripada Biofilem Sisa Plastik)
NUR HIDAYATUL ALAMI1,2, ELLA
PUTRY WULAN DARY2, NENGAH DWIANITA KUSWYTASARI2, ENNY
ZULAIKA2 & MAYA SHOVITRI2, FENRYCO PRATAMA3,
ISTY ADHITYA PURWASENA3 & PINGKAN ADITIAWATI3,*
1Doctoral Program of Biology, School of Life Sciences and
Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132,
Indonesia
2Department of Biology, Faculty of Science and Data Analytics, Institut
Teknologi Sepuluh Nopember, Jl. Raya ITS, Keputih, Sukolilo, Surabaya 60111, Indonesia
3Microbial Biotechnology Research Group, School of Life Sciences and
Technology,
Institut
Teknologi Bandung, Jl. Ganesha No.10, Bandung 40132, Indonesia
Diserahkan: 17 September 2024/Diterima:
5 Mei 2025
Abstract
Low-density polyethylene (LDPE) is an abundant and widely
commercialized petroleum-based synthetic thermoplastic. It has a high molecular
weight and a very hydrophobic surface. The strong C–C bond also makes LDPE resistant
to biological attacks. Biodegradation presents a promising eco-friendly
solution for tackling plastic waste. This study aimed to investigate the
potential of yeast from plastic waste to degrade LDPE. Yeast was isolated from
various plastic-polluted areas in Surabaya and Banyuwangi, Indonesia. The
screening test was performed on mineral salt medium agar (MSMA) supplemented
with polyethylene powder. The biodegradation test was conducted for 4 weeks in
Mineral Salt Medium Broth (MSMB) with LDPE film. The ability of the isolates to
degrade LDPE was evaluated by measuring the reduction in dry weight of plastic
(% degradation), yeast growth via Optical Density (OD600 nm), Scanning Electron
Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) analysis.
Screening on MSMA showed that 13 isolates could degrade polyethylene, as
indicated by the formation of clear zones. The five best isolates were used for
further biodegradation tests. The yeast isolate M.3.0.1 exhibited the highest
degradation percentage of 1.1474±0.0888%. It demonstrated increased growth in
the test medium, as indicated by an increase in optical density. In addition,
SEM analysis showed a change in the morphology of the LDPE surface, and FTIR
analysis showed a change in the transmittance value for the test plastic.
Keywords: Biodegradation;
low-density polyethylene; plastic; waste; yeast
Abstrak
Polietilena berketumpatan rendah (LDPE)
ialah termoplastik sintetik berasaskan petroleum yang banyak dan dikomersialkan
secara meluas. Ia mempunyai berat molekul yang tinggi dan permukaan yang sangat
hidrofobik. Ikatan C–C yang kuat juga menjadikan LDPE rintang terhadap serangan
biologi. Biodegradasi memberikan penyelesaian mesra alam yang berpotensi untuk
menangani sisa plastik. Penyelidikan ini bertujuan untuk mengkaji potensi yis
daripada sisa plastik untuk merendahkan LDPE. Yis diasingkan dari pelbagai
kawasan tercemar plastik di Surabaya dan Banyuwangi, Indonesia. Ujian saringan
dilakukan pada agar medium garam mineral (MSMA) yang ditambah dengan serbuk
polietilena. Ujian biodegradasi telah dijalankan selama 4 minggu dalam Mineral
Salt Medium Broth (MSMB) dengan filem LDPE. Keupayaan pencilan untuk
merendahkan LDPE dinilai dengan mengukur pengurangan berat kering plastik (%
degradasi), pertumbuhan yis melalui Ketumpatan Optik (OD600 nm), Mikroskopi Elektron
Pengimbasan (SEM) dan analisis Spektroskopi transformasi Fourier infra merah (FTIR).
Saringan pada MSMA menunjukkan bahawa 13 pencilan boleh merendahkan
polietilena, seperti yang ditunjukkan oleh pembentukan zon jernih. Lima
pencilan terbaik telah digunakan untuk ujian biodegradasi selanjutnya.
Pengasingan yis M.3.0.1 menunjukkan peratusan degradasi tertinggi iaitu
1.1474±0.0888%. Ia menunjukkan peningkatan pertumbuhan dalam medium ujian,
seperti yang ditunjukkan oleh peningkatan ketumpatan optik. Di samping itu,
analisis SEM mendedahkan perubahan dalam morfologi permukaan LDPE dan analisis
FTIR menunjukkan perubahan dalam nilai penghantaran untuk plastik ujian.
Kata kunci: Biodegradasi; plastik; polietilena
berketumpatan rendah; sisa; yis
RUJUKAN
Afianti, N.F., Rachman, A., Hatmanti, A.,
Yogaswara, D., Anggiani, M., Fitriya, N. & Darmayati, Y. 2022. Microbial
biofilm of plastic in tropical marine environment and their potential for
bioremediation of plastic waste. Journal of Ecological Engineering 23(4):
261-275. https://doi.org/10.12911/22998993/145463
Asmi, N., Baharuddin, M. & Febryanti, A.
2022. Skrining mikroba pendegradasi plastik dari tanah dan uji biodegradasi
dengan Fourier transform infrared (FTIR). Al-Kauniyah: Jurnal Biologi 15(1): 151-163. https://doi.org/10.15408/kauniyah.v15i1.19826
Bahl, S., Dolma, J., Singh, J.J. & Sehgal,
S. 2020. Biodegradation of plastics: A state of the art review. Materials
Today: Proceedings 39: 31-34. https://doi.org/10.1016/j.matpr.2020.06.096
Basmage, O.M. & Hashmi, M.S.J. 2020.
Plastic products in hospitals and healthcare systems. Encyclopedia of
Renewable and Sustainable Materials, edited by Hashmi, S. & Choudhury,
I.A. Elsevier. pp. 648-657.
https://doi.org/10.1016/B978-0-12-803581-8.11303-7
Bhagwat, G., O’Connor, W., Grainge, I. &
Palanisami, T. 2021. Understanding the fundamental basis for biofilm formation
on plastic surfaces: Role of conditioning films. Frontiers in Microbiology 12: 687118. https://doi.org/10.3389/fmicb.2021.687118
Brunner, I., Fischer, M., Rüthi, J., Stierli,
B. & Frey, B. 2018. Ability of fungi isolated from plastic debris floating
in the shoreline of a lake to degrade plastics. PLoS ONE 13(8):
e0202047. https://doi.org/10.1371/journal.pone.0202047
Burnd, M. & Yrick, J. 2021. Product preservation
design of vegetable and animal food processing. Journal La Lifesci.
2(6): 1-12. https://doi.org/10.37899/journallalifesci.v2i6.525
Cheng, J., Jacquin, J., Conan, P., Pujo-Pay,
M., Barbe, V., George, M., Fabre, P., Bruzaud, S., Ter Halle, A., Meistertzheim,
A.L. & Ghiglione, J.F. 2021. Relative influence of plastic debris size and
shape, chemical composition and phytoplankton-bacteria interactions in driving
seawater plastisphere abundance, diversity and activity. Frontiers in
Microbiology 11: 610231. https://doi.org/10.3389/fmicb.2020.610231
Damayanti, N., Sulaiman, N. & Ibrahim, N.
2020. Plastic biodegradation by Peseudomonas aeruginosa UKMCC1011 using
a modified Winogradsky column. Scientific Journal of PPI-UKM Science and
Engineering 7(2): 43-49. https://doi.org/10.27512/sjppi-ukm/se/a17052020
Das, M.P. & Kumar, S. 2015. An approach to
low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3
Biotech 5(1): 81-86. https://doi.org/10.1007/s13205-014-0205-1
Duan, D., Feng, Z., Dong, X., Chen, X., Zhang,
Y., Wan, K., Wang, Y., Wang, Q., Xiao, G., Liu, H. & Ruan, R. 2021.
Improving bio-oil quality from low-density polyethylene pyrolysis: Effects of
varying activation and pyrolysis parameters. Energy 232: 121090.
https://doi.org/10.1016/j.energy.2021.121090
Elsamahy, T., Sun, J., Elsilk, S.E. & Ali,
S.S. 2023. Biodegradation of low-density polyethylene plastic waste by a
constructed tri-culture yeast consortium from wood-feeding termite: Degradation
mechanism and pathway. Journal of Hazardous Materials 448: 130944.
https://doi.org/10.1016/j.jhazmat.2023.130944
El-Sayed, A.S.A., ElSayed, A.I., Wadan, K.M.,
El-Saadany, S.S. & Abd El-Hady, N.A.A. 2024. Camptothecin bioprocessing
from Aspergillus terreus, an endophyte of Catharanthus roseus: Antiproliferative
activity, topoisomerase inhibition and cell cycle analysis. Microbial Cell
Factories 23: 15. https://doi.org/10.1186/s12934-023-02270-4
Geyer, R. 2020. Production, use, and fate of
synthetic polymers. In Plastic Waste and Recycling, edited by Letcher,
T.M. Massachusetts: Academic Press. pp. 13-32.
https://doi.org/10.1016/b978-0-12-817880-5.00002-5
Gilan, I., Hadar, Y. & Sivan, A. 2004.
Colonization, biofilm formation and biodegradation of polyethylene by a strain
of Rhodococcus ruber. Applied Microbiology and Biotechnology 65(1): 97-104. https://doi.org/10.1007/s00253-004-1584-8
Gupta, K.K. & Devi, D. 2020.
Characteristics investigation on biofilm formation and biodegradation
activities of Pseudomonas aeruginosa strain ISJ14 colonizing low density
polyethylene (LDPE) surface. Heliyon 6(7): e04398.
https://doi.org/10.1016/j.heliyon.2020.e04398
Hussein, A.A., Al-Mayaly, I.K.A., Hussein, S.,
Hussein, A.A., Al-Mayaly, I.K., Khudeir, S.H., Hussein, A.A., Al-Mayaly, I.K.
& Kudier, S.H. 2015. Isolation, screening and identification of Low Density
Polyethylene (LDPE) degrading bacteria from contaminated soil with plastic
wastes. Mesopotamia Environmental Journal 1(4): 1-14.
Khruengsai, S., Sripahco, T. & Pripdeevech,
P. 2021. Low-density polyethylene film biodegradation potential by fungal
species from Thailand. Journal of Fungi 7(8): 594.
https://doi.org/10.3390/jof7080594
Kopecká, R., Kubínová, I., Sovová, K.,
Mravcová, L., Vítěz, T. & Vítězová, M. 2022. Microbial
degradation of virgin polyethylene by bacteria isolated from a landfill site. SN
Applied Sciences 4: 302. https://doi.org/10.1007/s42452-022-05182-x
Kumar, R., Verma, A., Shome, A., Sinha, R.,
Sinha, S., Jha, P.K., Kumar, R., Kumar, P., Shubham, Das, S., Sharma, P. &
Prasad, P.V.V. 2021. Impacts of plastic pollution on ecosystem services,
sustainable development goals, and need to focus on circular economy and policy
interventions. Sustainability (Switzerland) 13(17): 9963.
https://doi.org/10.3390/su13179963
Kumari, S., Rao, A., Kaur, M. & Dhania, G.
2023. Petroleum-based plastics versus bio-based plastics: A review. Nature
Environment and Pollution Technology 22(3): 1111-1124.
https://doi.org/10.46488/NEPT.2023.v22i03.003
Kurniawan, A., Tsuchiya, Y., Eda, S. &
Morisaki, H. 2015. Characterization of the internal ion environment of biofilms
based on charge density and shape of ion. Colloids and Surfaces B:
Biointerfaces 136: 22-26. https://doi.org/10.1016/j.colsurfb.2015.08.047
Kuswytasari, N.D., Kurniawati, A.R., Alami,
N.H., Zulaika, E., Shovitri, M., Kumari, N. & Luqman, A. 2023. Plastic
biodegradation potential of soil mangrove mold isolated from Wonorejo,
Indonesia. Advancements in Life Sciences 10(2): 228-238.
http://blast.ncbi.nlm.nih.gov/Blast.cgi
Liu, X., Yao, H., Zhao, X. & Ge, C. 2023.
Biofilm formation and control of foodborne pathogenic bacteria. Molecules 28(6): 2432. https://doi.org/10.3390/molecules28062432
Lubis, A.S., Muis, Z.A. & Siregar, N.A.
2020. The effects of low-density polyethylene (LDPE) addition to the
characteristics of asphalt mixture. IOP Conference Series: Earth and
Environmental Science 476: 012063.
https://doi.org/10.1088/1755-1315/476/1/012063
Martins, C.H.G., Pires, R.H., Cunha, A.O.,
Pereira, C.A.M., de Lacorte Singulani, J., Abrão, F., de Moraes, T. &
Mendes-Giannini, M.J.S. 2016. Candida/Candida biofilms. First
description of dual-species Candida albicans/C. rugosa biofilm. Fungal
Biology 120(4): 530-537. https://doi.org/10.1016/j.funbio.2016.01.013
Meijer, L.J.J., Van Emmerik, T., Van Der Ent,
R., Schmidt, C. & Lebreton, L. 2021. More than 1000 rivers account for 80%
of global riverine plastic emissions into the ocean. Sci. Adv. 7(18): eaaz5803.
https://www.science.org
Mohammadi, K. & Saris, P.E.J. 2022. Biofilm
formation of probiotic Saccharomyces cerevisiae var. boulardii on glass
surface during beer bottle ageing. Beverages 8(4): 77.
https://doi.org/10.3390/beverages8040077
Mohanan, N., Montazer, Z., Sharma, P.K. &
Levin, D.B. 2020. Microbial and enzymatic degradation of synthetic plastics. Frontiers
in Microbiology https://doi.org/10.3389/fmicb.2020.580709
Nayanathara Thathsarani Pilapitiya, P.G.C.
& Ratnayake, A.S. 2024. The world of plastic waste: A review. Cleaner
Materials 11: 100220. https://doi.org/10.1016/j.clema.2024.100220
Odobel, C., Dussud, C., Philip, L., Derippe,
G., Lauters, M., Eyheraguibel, B., Burgaud, G., Halle, A., Meistertzheim, A.,
Bruzaud, S., Bruzaud, S. & Ghiglione, J. 2021. Bacterial abundance,
diversity and activity during long-term colonization of non-biodegradable and
biodegradable plastics in seawater. Frontiers in Microbiology https://doi.org/10.3389/fmicb.2021.734782
Rachmawati, A.C., Mahardika, A., Djohan,
Susanto, A.B. & Andriana, B.B. 2021. Exploration of plastic-degrading
bacteria from Marina Beach, Semarang, Central Java. Ilmu Kelautan:
Indonesian Journal of Marine Sciences 26(4): 247-253.
https://doi.org/10.14710/ik.ijms.26.4.247-253
Rana, K. & Rana, N. 2020. Isolation and
screening of plastic degrading bacteria from dumping sites of solid waste. International
Journal of Current Microbiology and Applied Sciences 9(7): 2611-2618.
https://doi.org/10.20546/ijcmas.2020.907.308
Restrepo-Flórez, J.M., Bassi, A. &
Thompson, M.R. 2014. Microbial degradation and deterioration of polyethylene -
A review. International Biodeterioration and Biodegradation 88: 83-90.
https://doi.org/10.1016/j.ibiod.2013.12.014
Sarker, M., Rashid, M.M., Rahman, M.S. &
Molla, M. 2012. Environmentally harmful low density waste plastic conversion
into kerosene grade fuel. Journal of Environmental Protection 3(8):
700-708. https://doi.org/10.4236/jep.2012.38083
Sekar, S., Mahadevan, S., Kumar, S.S.D. &
Mandal, A.B. 2011. Thermokinetic responses of the metabolic activity of Staphylococcus
lentus cultivated in a glucose limited mineral salt medium. Journal of
Thermal Analysis and Calorimetry 104(1): 149-155.
https://doi.org/10.1007/s10973-010-1121-1
Seo, M.J., Yun, S.D., Kim, H.W. & Yeom,
S.J. 2023. Polyethylene-biodegrading microbes and their future directions. Biotechnology
and Bioprocess Engineering 28(6): 977-989.
https://doi.org/10.1007/s12257-022-0264-9
Shah, A.A., Hasan, F., Hameed, A. & Ahmed,
S. 2008. Biological degradation of plastics: A comprehensive review. Biotechnology
Advances 26(3): 246-265. https://doi.org/10.1016/j.biotechadv.2007.12.005
Shineh, G., Mobaraki, M., Perves Bappy, M.J.
& Mills, D.K. 2023. Biofilm formation, and related impacts on healthcare,
food processing and packaging, industrial manufacturing, marine industries, and
sanitation - A review. Applied Microbiology 3(3): 629-665.
https://doi.org/10.3390/applmicrobiol3030044
Shovitri, M., Hefdiyah, H., Antika, T.R.,
Kuswytasari, N.D., Alami, N.H., Zulaika, E., Kim, S.W. & Oh, M.K. 2023.
Plastic-degrading bacteria isolated from contaminated mangrove sediment in
Wonorejo, Surabaya. Applied Environmental Biotechnology 8(2): 18-28.
https://doi.org/10.26789/AEB.2023.02.003
Srikanth, M., Sandeep, T.S.R.S., Sucharitha, K.
& Godi, S. 2022. Biodegradation of plastic polymers by fungi: A brief
review. Bioresources and Bioprocessing 9: 42.
https://doi.org/10.1186/s40643-022-00532-4
Tao, X., Ouyang, H., Zhou, A., Wang, D.,
Matlock, H., Morgan, J.S., Ren, A.T., Mu, D., Pan, C., Zhu, X., Han, A. &
Zhou, J. 2023. Polyethylene degradation by a Rhodococcous strain
isolated from naturally weathered plastic waste enrichment. Environmental
Science and Technology 57(37): 13901-13911.
https://doi.org/10.1021/acs.est.3c03778
Tokiwa, Y., Calabia, B.P., Ugwu, C.U. &
Aiba, S. 2009. Biodegradability of plastics. International Journal of
Molecular Sciences 10(9): 3722-3742. https://doi.org/10.3390/ijms10093722
Tuteja, J., Vyas, A. & Sand, A. 2024. Polyethylene
- New Developments and Applications.
https://doi.org/10.5772/intechopen.111214
Wahyuningsih, N. & Zulaika, E. 2018.
Perbandingan pertumbuhan bakteri selulolitik pada media nutrient broth dan
carboxy methyl cellulose. Jurnal Sains dan Seni ITS 7(2): E36-E38.
Wall, G., Montelongo-Jauregui, D., Vidal
Bonifacio, B., Lopez-Ribot, J.L. & Uppuluri, P. 2019. Candida albicans biofilm growth and dispersal: Contributions to pathogenesis. Current Opinion
in Microbiology 52: 1-6. https://doi.org/10.1016/j.mib.2019.04.001
World Bank. 2021. Plastic Waste Discharges: From Rivers and Coastlines in Indonesia. East Asia and Pacific Region:
MARINE PLASTICS SERIES. www.worldbank.org
Yang, W.K., Gong, Z., Wang, B.T., Hu, S., Zhuo,
Y., Jin, C.Z., Jin, L., Lee, H.G. & Jin, F.J. 2024. Biodegradation of
low-density polyethylene by mixed fungi composed of Alternaria sp. and Trametes sp. isolated from landfill sites. BMC Microbiology 24: 321.
https://doi.org/10.1186/s12866-024-03477-0
Yoon, M.J., Jeon, H.J. & Kim, M.N. 2012.
Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant
cell. Journal of Bioremediation & Biodegradation 3: 145.
https://doi.org/10.4172/2155-6199.1000145
Zadjelovic, V., Erni-Cassola, G., Obrador-Viel,
T., Lester, D., Eley, Y., Gibson, M.I., Dorador, C., Golyshin, P.N., Black, S.,
Wellington, E.M.H. & Christie-Oleza, J.A. 2022. A mechanistic understanding
of polyethylene biodegradation by the marine bacterium Alcanivorax. Journal
of Hazardous Materials 436: 129278.
https://doi.org/10.1016/j.jhazmat.2022.129278
Zhang, F., Zhao, Y., Wang, D., Yan, M., Zhang,
J., Zhang, P., Ding, T., Chen, L. & Chen, C. 2021. Current technologies for
plastic waste treatment: A review. Journal of Cleaner Production 282:
124523.
Zhang, N., Ding, M. & Yuan, Y. 2022.
Current advances in biodegradation of polyolefins. Microorganisms 10(8):
1537. MDPI. https://doi.org/10.3390/microorganisms10081537
Zhang, Y.,
Pedersen, J.N., Eser, B.E. & Guo, Z. 2022. Biodegradation of polyethylene
and polystyrene: From microbial deterioration to enzyme discovery. Biotechnology
Advances 60: 107991. Elsevier Inc.
https://doi.org/10.1016/j.biotechadv.2022.107991
*Pengarang untuk surat-menyurat; email: pingkan@itb.ac.id